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Hello!

| am Anzor Gozalishvili

Lead Machine Learning Engineer & Data Scientist @ MaxinAl

Email: anzor.gozalishvili@maxinai.com
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Simple Machine Learning steps
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Non-Explained outputs of
ML Models




Bias?
Fairness?




Better to say:

“your loan application was rejected
pecause of lack of sufficient income
proof!”







Type I error

Type II error
(false positive)

(false negative)

You’'re not
pregnant

-
-
-
-
-
-
.
-
-
-
-
-~
-
-

.

You're
pregnant
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“Interpretability is the degree to
which a human can understand the
cause of a decision”
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How to interpret?

Feature summary statistics

Feature summary visualization

Model internals (e.g. learned weights)

Data points

Intrinsically interpretable model A
O
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Interpretable Models




Linear Regression
Relationship between Height and Weight
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Decisgion Tree
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K-Nearest Neighbours
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Non-Interpretable Models
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Model-Agnostic
Interpretation Methods




_/ < ) Partial Dependence Plot (PPD)

Partial dependence of house value on non-location features
for the California housing dataset, with Gradient Boosting
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< ) Individual Conditional Expectation (ICE)
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Marginal Plots (M-Plots)

Conditional distribution P(x2|x1=0.75)
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./ < ) Permutation Feature Importance
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Global Surrogate

days_since_2011 <=435 & days_since_2011 <=435 &
temp <= 13.7375 temp > 13.7375
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Local Surrogate
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./ < ) Local Surrogate Kernel
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y=sci.med (probability 0.576, score 0.621) top features

Contribution’ Feature
+0.972  Highlighted in text (sum)
-0.351 <BIAS>

as i recall from my bout with kidney stones, there isn't any medication that can do anything about
them except relieve the pain. either they pass, or they have to be broken up with sound, or they
have to be extracted surgically. when i was in, the x-ray tech happened to mention that she'd had
kidney stones and children, and the childbirth hurt less.




sShapley Values

The Shapley value is a solution concept in
Cooperative Game Theory.
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and ate together and they

payed 70% in total.

o
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How much they pay usually”

o If is eating alone, he would pay 35

o If is eating alone, he would pay 45

{

o If and both eat alone, they would pay 70
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We take all permutations of the 2 participants
in sequence and see the incremental payout
that each of them has to make.
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o
. Consider all Permutations
o)

1. ( ) — (35, 35)
2. | ) — (45, 25)

(35 +25)/2 =30
(45 + 35)/ 2 = 40
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Y/ U SHAP (Force Plot)

Why my prediction was different from baseline?

higher = lower

base value output value
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Goal Scored
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The Future of Interpretability
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The focus will be on model-agnostic
interpretability tools.

Machine learning will be automated and, with it,
interpretabllity.

We do not analyze data, we analyze models.
The data scientists will automate themselves.
Robots and programs will explain themselves.
Interpretability could boost machine intelligence
research.



by Google

Al Explanations What-If Tool Continuous Evaluation

Receive a score Investigate model Sample the prediction from

explaining how each performances for a trained machine learning

factor contributed to range of features in models deployed to Al

the final result of the your dataset, Platform. Provide ground

model predictions. optimization truth labels for prediction
strategies, and even inputs using the continuous
manipulations to evaluation capability. Data ’
individual datapoint Labeling Service compares
values using the model predictions with O
What-If Tool ground truth labels to help
integrated with Al you improve model
Platform. performance.



Interpretable
Machine Learning

A Guide for Making
Black Box Models Explainable
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Any questions?

You can find me at:

<& anzor.gozalishvili@maxinai.com

<& github.com/AnzorGozalishvili

< facebook.com/anzor.gozalishvili

<& linkedin.com/in/anzor-gozalishvili-481967120/
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